Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 9 Apr 2023]
Title:Towards Arbitrary-scale Histopathology Image Super-resolution: An Efficient Dual-branch Framework based on Implicit Self-texture Enhancement
View PDFAbstract:Existing super-resolution models for pathology images can only work in fixed integer magnifications and have limited performance. Though implicit neural network-based methods have shown promising results in arbitrary-scale super-resolution of natural images, it is not effective to directly apply them in pathology images, because pathology images have special fine-grained image textures different from natural images. To address this challenge, we propose a dual-branch framework with an efficient self-texture enhancement mechanism for arbitrary-scale super-resolution of pathology images. Extensive experiments on two public datasets show that our method outperforms both existing fixed-scale and arbitrary-scale algorithms. To the best of our knowledge, this is the first work to achieve arbitrary-scale super-resolution in the field of pathology images. Codes will be available.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.