Computer Science > Machine Learning
[Submitted on 7 Apr 2023 (v1), last revised 24 Jan 2024 (this version, v3)]
Title:Toward Practical Entity Alignment Method Design: Insights from New Highly Heterogeneous Knowledge Graph Datasets
View PDF HTML (experimental)Abstract:The flourishing of knowledge graph applications has driven the need for entity alignment (EA) across KGs. However, the heterogeneity of practical KGs, characterized by differing scales, structures, and limited overlapping entities, greatly surpasses that of existing EA datasets. This discrepancy highlights an oversimplified heterogeneity in current EA datasets, which obstructs a full understanding of the advancements achieved by recent EA methods. In this paper, we study the performance of EA methods in practical settings, specifically focusing on the alignment of highly heterogeneous KGs (HHKGs). Firstly, we address the oversimplified heterogeneity settings of current datasets and propose two new HHKG datasets that closely mimic practical EA scenarios. Then, based on these datasets, we conduct extensive experiments to evaluate previous representative EA methods. Our findings reveal that, in aligning HHKGs, valuable structure information can hardly be exploited through message-passing and aggregation mechanisms. This phenomenon leads to inferior performance of existing EA methods, especially those based on GNNs. These findings shed light on the potential problems associated with the conventional application of GNN-based methods as a panacea for all EA datasets. Consequently, in light of these observations and to elucidate what EA methodology is genuinely beneficial in practical scenarios, we undertake an in-depth analysis by implementing a simple but effective approach: Simple-HHEA. This method adaptly integrates entity name, structure, and temporal information to navigate the challenges posed by HHKGs. Our experiment results conclude that the key to the future EA model design in practice lies in their adaptability and efficiency to varying information quality conditions, as well as their capability to capture patterns across HHKGs.
Submission history
From: Xuhui Jiang [view email][v1] Fri, 7 Apr 2023 04:10:26 UTC (2,570 KB)
[v2] Mon, 10 Apr 2023 13:17:25 UTC (2,571 KB)
[v3] Wed, 24 Jan 2024 07:56:04 UTC (3,175 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.