Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 4 Apr 2023]
Title:MadEye: Boosting Live Video Analytics Accuracy with Adaptive Camera Configurations
View PDFAbstract:Camera orientations (i.e., rotation and zoom) govern the content that a camera captures in a given scene, which in turn heavily influences the accuracy of live video analytics pipelines. However, existing analytics approaches leave this crucial adaptation knob untouched, instead opting to only alter the way that captured images from fixed orientations are encoded, streamed, and analyzed. We present MadEye, a camera-server system that automatically and continually adapts orientations to maximize accuracy for the workload and resource constraints at hand. To realize this using commodity pan-tilt-zoom (PTZ) cameras, MadEye embeds (1) a search algorithm that rapidly explores the massive space of orientations to identify a fruitful subset at each time, and (2) a novel knowledge distillation strategy to efficiently (with only camera resources) select the ones that maximize workload accuracy. Experiments on diverse workloads show that MadEye boosts accuracy by 2.9-25.7% for the same resource usage, or achieves the same accuracy with 2-3.7x lower resource costs.
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.