Computer Science > Machine Learning
[Submitted on 3 Apr 2023]
Title:Unified Emulation-Simulation Training Environment for Autonomous Cyber Agents
View PDFAbstract:Autonomous cyber agents may be developed by applying reinforcement and deep reinforcement learning (RL/DRL), where agents are trained in a representative environment. The training environment must simulate with high-fidelity the network Cyber Operations (CyOp) that the agent aims to explore. Given the complexity of net-work CyOps, a good simulator is difficult to achieve. This work presents a systematic solution to automatically generate a high-fidelity simulator in the Cyber Gym for Intelligent Learning (CyGIL). Through representation learning and continuous learning, CyGIL provides a unified CyOp training environment where an emulated CyGIL-E automatically generates a simulated CyGIL-S. The simulator generation is integrated with the agent training process to further reduce the required agent training time. The agent trained in CyGIL-S is transferrable directly to CyGIL-E showing full transferability to the emulated "real" network. Experimental results are presented to demonstrate the CyGIL training performance. Enabling offline RL, the CyGIL solution presents a promising direction towards sim-to-real for leveraging RL agents in real-world cyber networks.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.