Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 4 Apr 2023 (v1), last revised 28 Jun 2024 (this version, v2)]
Title:DLRover-RM: Resource Optimization for Deep Recommendation Models Training in the Cloud
View PDF HTML (experimental)Abstract:Deep learning recommendation models (DLRM) rely on large embedding tables to manage categorical sparse features. Expanding such embedding tables can significantly enhance model performance, but at the cost of increased GPU/CPU/memory usage. Meanwhile, tech companies have built extensive cloud-based services to accelerate training DLRM models at scale. In this paper, we conduct a deep investigation of the DLRM training platforms at AntGroup and reveal two critical challenges: low resource utilization due to suboptimal configurations by users and the tendency to encounter abnormalities due to an unstable cloud environment. To overcome them, we introduce DLRover-RM, an elastic training framework for DLRMs designed to increase resource utilization and handle the instability of a cloud environment. DLRover-RM develops a resource-performance model by considering the unique characteristics of DLRMs and a three-stage heuristic strategy to automatically allocate and dynamically adjust resources for DLRM training jobs for higher resource utilization. Further, DLRover-RM develops multiple mechanisms to ensure efficient and reliable execution of DLRM training jobs. Our extensive evaluation shows that DLRover-RM reduces job completion times by 31%, increases the job completion rate by 6%, enhances CPU usage by 15%, and improves memory utilization by 20%, compared to state-of-the-art resource scheduling frameworks. DLRover-RM has been widely deployed at AntGroup and processes thousands of DLRM training jobs on a daily basis. DLRover-RM is open-sourced and has been adopted by 10+ companies.
Submission history
From: Mingjie Tang [view email][v1] Tue, 4 Apr 2023 02:13:46 UTC (3,457 KB)
[v2] Fri, 28 Jun 2024 09:17:31 UTC (16,360 KB)
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.