Computer Science > Machine Learning
[Submitted on 29 Mar 2023 (v1), last revised 28 Jun 2024 (this version, v4)]
Title:The G-invariant graph Laplacian
View PDF HTML (experimental)Abstract:Graph Laplacian based algorithms for data lying on a manifold have been proven effective for tasks such as dimensionality reduction, clustering, and denoising. In this work, we consider data sets whose data points lie on a manifold that is closed under the action of a known unitary matrix Lie group G. We propose to construct the graph Laplacian by incorporating the distances between all the pairs of points generated by the action of G on the data set. We deem the latter construction the ``G-invariant Graph Laplacian'' (G-GL). We show that the G-GL converges to the Laplace-Beltrami operator on the data manifold, while enjoying a significantly improved convergence rate compared to the standard graph Laplacian which only utilizes the distances between the points in the given data set. Furthermore, we show that the G-GL admits a set of eigenfunctions that have the form of certain products between the group elements and eigenvectors of certain matrices, which can be estimated from the data efficiently using FFT-type algorithms. We demonstrate our construction and its advantages on the problem of filtering data on a noisy manifold closed under the action of the special unitary group SU(2).
Submission history
From: Eitan Rosen [view email][v1] Wed, 29 Mar 2023 20:07:07 UTC (112 KB)
[v2] Fri, 31 Mar 2023 07:06:26 UTC (112 KB)
[v3] Thu, 1 Jun 2023 07:21:26 UTC (114 KB)
[v4] Fri, 28 Jun 2024 13:40:00 UTC (387 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.