Computer Science > Software Engineering
[Submitted on 26 Mar 2023 (v1), last revised 25 Dec 2023 (this version, v3)]
Title:PBScaler: A Bottleneck-aware Autoscaling Framework for Microservice-based Applications
View PDF HTML (experimental)Abstract:Autoscaling is critical for ensuring optimal performance and resource utilization in cloud applications with dynamic workloads. However, traditional autoscaling technologies are typically no longer applicable in microservice-based applications due to the diverse workload patterns and complex interactions between microservices. Specifically, the propagation of performance anomalies through interactions leads to a high number of abnormal microservices, making it difficult to identify the root performance bottlenecks (PBs) and formulate appropriate scaling strategies. In addition, to balance resource consumption and performance, the existing mainstream approaches based on online optimization algorithms require multiple iterations, leading to oscillation and elevating the likelihood of performance degradation. To tackle these issues, we propose PBScaler, a bottleneck-aware autoscaling framework designed to prevent performance degradation in a microservice-based application. The key insight of PBScaler is to locate the PBs. Thus, we propose TopoRank, a novel random walk algorithm based on the topological potential to reduce unnecessary scaling. By integrating TopoRank with an offline performance-aware optimization algorithm, PBScaler optimizes replica management without disrupting the online application. Comprehensive experiments demonstrate that PBScaler outperforms existing state-of-the-art approaches in mitigating performance issues while conserving resources efficiently.
Submission history
From: Shuaiyu Xie [view email][v1] Sun, 26 Mar 2023 04:20:17 UTC (3,450 KB)
[v2] Sun, 5 Nov 2023 04:32:24 UTC (3,450 KB)
[v3] Mon, 25 Dec 2023 11:58:34 UTC (4,317 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.