Computer Science > Machine Learning
[Submitted on 21 Mar 2023 (v1), last revised 14 Aug 2023 (this version, v4)]
Title:Adaptive Experimentation at Scale: A Computational Framework for Flexible Batches
View PDFAbstract:Standard bandit algorithms that assume continual reallocation of measurement effort are challenging to implement due to delayed feedback and infrastructural/organizational difficulties. Motivated by practical instances involving a handful of reallocation epochs in which outcomes are measured in batches, we develop a computation-driven adaptive experimentation framework that can flexibly handle batching. Our main observation is that normal approximations, which are universal in statistical inference, can also guide the design of adaptive algorithms. By deriving a Gaussian sequential experiment, we formulate a dynamic program that can leverage prior information on average rewards. Instead of the typical theory-driven paradigm, we leverage computational tools and empirical benchmarking for algorithm development. In particular, our empirical analysis highlights a simple yet effective algorithm, Residual Horizon Optimization, which iteratively solves a planning problem using stochastic gradient descent. Our approach significantly improves statistical power over standard methods, even when compared to Bayesian bandit algorithms (e.g., Thompson sampling) that require full distributional knowledge of individual rewards. Overall, we expand the scope of adaptive experimentation to settings that are difficult for standard methods, involving limited adaptivity, low signal-to-noise ratio, and unknown reward distributions.
Submission history
From: Ethan Che [view email][v1] Tue, 21 Mar 2023 04:17:03 UTC (3,508 KB)
[v2] Sat, 15 Apr 2023 02:19:07 UTC (3,508 KB)
[v3] Sun, 9 Jul 2023 23:14:13 UTC (3,826 KB)
[v4] Mon, 14 Aug 2023 23:33:28 UTC (3,826 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.