Electrical Engineering and Systems Science > Systems and Control
[Submitted on 18 Mar 2023]
Title:Covariance Steering for Systems Subject to Unknown Parameters
View PDFAbstract:This work considers the optimal covariance steering problem for systems subject to both additive noise and uncertain parameters which may enter multiplicatively with the state and the control. The unknown parameters are modeled as a constant random variable sampled from a distribution with known moments. The optimal covariance steering problem is formulated using a moment-based representation of the system dynamics, which includes dependence between the unknown parameters and future states, and is solved using sequential convex programming. The proposed approach is demonstrated numerically using a holonomic spacecraft system and an autonomous vehicle control application.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.