Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Mar 2023]
Title:Emotional Reaction Intensity Estimation Based on Multimodal Data
View PDFAbstract:This paper introduces our method for the Emotional Reaction Intensity (ERI) Estimation Challenge, in CVPR 2023: 5th Workshop and Competition on Affective Behavior Analysis in-the-wild (ABAW). Based on the multimodal data provided by the originazers, we extract acoustic and visual features with different pretrained models. The multimodal features are mixed together by Transformer Encoders with cross-modal attention mechnism. In this paper, 1. better features are extracted with the SOTA pretrained models. 2. Compared with the baseline, we improve the Pearson's Correlations Coefficient a lot. 3. We process the data with some special skills to enhance performance ability of our model.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.