Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Mar 2023 (v1), last revised 1 Jul 2024 (this version, v2)]
Title:Patch-Prompt Aligned Bayesian Prompt Tuning for Vision-Language Models
View PDF HTML (experimental)Abstract:For downstream applications of vision-language pre-trained models, there has been significant interest in constructing effective prompts. Existing works on prompt engineering, which either require laborious manual designs or optimize the prompt tuning as a point estimation problem, may fail to describe diverse characteristics of categories and limit their applications. We introduce a Bayesian probabilistic resolution to prompt tuning, where the label-specific stochastic prompts are generated hierarchically by first sampling a latent vector from an underlying distribution and then employing a lightweight generative model. Importantly, we semantically regularize the tuning process by minimizing the statistical distance between the visual patches and linguistic prompts, which pushes the stochastic label representations to faithfully capture diverse visual concepts, instead of overfitting the training categories. We evaluate the effectiveness of our approach on four tasks: few-shot image recognition, base-to-new generalization, dataset transfer learning, and domain shifts. Extensive results over 15 datasets show promising transferability and generalization performance of our proposed model, both quantitatively and qualitatively.
Submission history
From: Xinyang Liu [view email][v1] Thu, 16 Mar 2023 06:09:15 UTC (1,582 KB)
[v2] Mon, 1 Jul 2024 15:29:45 UTC (8,348 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.