Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 15 Mar 2023]
Title:Gamify Stencil Dwarf on Cloud for Democratizing Scientific Computing
View PDFAbstract:Stencil computation is one of the most important kernels in various scientific computing. Nowadays, most Stencil-driven scientific computing still relies heavily on supercomputers, suffering from expensive access, poor scalability, and duplicated optimizations.
This paper proposes Tetris, the first system for high-performance Stencil on heterogeneous CPU+GPU, towards democratizing Stencil-driven scientific computing on Cloud. In Tetris, polymorphic tiling tetrominoes are first proposed to bridge different hardware architectures and various application contexts with a perfect spatial and temporal tessellation automatically. Tetris is contributed by three main components: (1) Underlying hardware characteristics are first captured to achieve a sophisticated Pattern Mapping by register-level tetrominoes; (2) An efficient Locality Enhancer is first presented for data reuse on spatial and temporal dimensions simultaneously by cache/SMEM-level tetrominoes; (3) A novel Concurrent Scheduler is first designed to exploit the full potential of on-cloud memory and computing power by memory-level tetrominoes. Tetris is orthogonal to (and complements) the optimizations or deployments for a wide variety of emerging and legacy scientific computing applications. Results of thermal diffusion simulation demonstrate that the performance is improved by 29.6x, reducing time cost from day to hour, while preserving the original accuracy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.