Computer Science > Robotics
[Submitted on 14 Mar 2023 (v1), last revised 25 Oct 2023 (this version, v2)]
Title:GoNet: An Approach-Constrained Generative Grasp Sampling Network
View PDFAbstract:This work addresses the problem of learning approach-constrained data-driven grasp samplers. To this end, we propose GoNet: a generative grasp sampler that can constrain the grasp approach direction to a subset of SO(3). The key insight is to discretize SO(3) into a predefined number of bins and train GoNet to generate grasps whose approach directions are within those bins. At run-time, the bin aligning with the second largest principal component of the observed point cloud is selected. GoNet is benchmarked against GraspNet, a state-of-the-art unconstrained grasp sampler, in an unconfined grasping experiment in simulation and on an unconfined and confined grasping experiment in the real world. The results demonstrate that GoNet achieves higher success-over-coverage in simulation and a 12%-18% higher success rate in real-world table-picking and shelf-picking tasks than the baseline.
Submission history
From: Zehang Weng [view email][v1] Tue, 14 Mar 2023 15:26:42 UTC (9,377 KB)
[v2] Wed, 25 Oct 2023 09:06:44 UTC (20,409 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.