Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 14 Mar 2023]
Title:Multi-Channel Masking with Learnable Filterbank for Sound Source Separation
View PDFAbstract:This work proposes a learnable filterbank based on a multi-channel masking framework for multi-channel source separation. The learnable filterbank is a 1D Conv layer, which transforms the raw waveform into a 2D representation. In contrast to the conventional single-channel masking method, we estimate a mask for each individual microphone channel. The estimated masks are then applied to the transformed waveform representation like in the traditional filter-and-sum beamforming operation. Specifically, each mask is used to multiply the corresponding channel's 2D representation, and the masked output of all channels are then summed. At last, a 1D transposed Conv layer is used to convert the summed masked signal into the waveform domain. The experimental results show our method outperforms single-channel masking with a learnable filterbank and can outperform multi-channel complex masking with STFT complex spectrum in the STGCSEN model if a learnable filterbank is transformed to a higher feature dimension. The spatial response analysis also verifies that multi-channel masking in the learnable filterbank domain has spatial selectivity.
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.