Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Mar 2023]
Title:View Adaptive Light Field Deblurring Networks with Depth Perception
View PDFAbstract:The Light Field (LF) deblurring task is a challenging problem as the blur images are caused by different reasons like the camera shake and the object motion. The single image deblurring method is a possible way to solve this problem. However, since it deals with each view independently and cannot effectively utilize and maintain the LF structure, the restoration effect is usually not ideal. Besides, the LF blur is more complex because the degree is affected by the views and depth. Therefore, we carefully designed a novel LF deblurring network based on the LF blur characteristics. On one hand, since the blur degree varies a lot in different views, we design a novel view adaptive spatial convolution to deblur blurred LFs, which calculates the exclusive convolution kernel for each view. On the other hand, because the blur degree also varies with the depth of the object, a depth perception view attention is designed to deblur different depth areas by selectively integrating information from different views. Besides, we introduce an angular position embedding to maintain the LF structure better, which ensures the model correctly restores the view information. Quantitative and qualitative experimental results on synthetic and real images show that the deblurring effect of our method is better than other state-of-the-art methods.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.