Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 13 Mar 2023 (v1), last revised 21 Aug 2024 (this version, v2)]
Title:Vessel-Promoted OCT to OCTA Image Translation by Heuristic Contextual Constraints
View PDF HTML (experimental)Abstract:Optical Coherence Tomography Angiography (OCTA) is a crucial tool in the clinical screening of retinal diseases, allowing for accurate 3D imaging of blood vessels through non-invasive scanning. However, the hardware-based approach for acquiring OCTA images presents challenges due to the need for specialized sensors and expensive devices. In this paper, we introduce a novel method called TransPro, which can translate the readily available 3D Optical Coherence Tomography (OCT) images into 3D OCTA images without requiring any additional hardware modifications. Our TransPro method is primarily driven by two novel ideas that have been overlooked by prior work. The first idea is derived from a critical observation that the OCTA projection map is generated by averaging pixel values from its corresponding B-scans along the Z-axis. Hence, we introduce a hybrid architecture incorporating a 3D adversarial generative network and a novel Heuristic Contextual Guidance (HCG) module, which effectively maintains the consistency of the generated OCTA images between 3D volumes and projection maps. The second idea is to improve the vessel quality in the translated OCTA projection maps. As a result, we propose a novel Vessel Promoted Guidance (VPG) module to enhance the attention of network on retinal vessels. Experimental results on two datasets demonstrate that our TransPro outperforms state-of-the-art approaches, with relative improvements around 11.4% in MAE, 2.7% in PSNR, 2% in SSIM, 40% in VDE, and 9.1% in VDC compared to the baseline method. The code is available at: this https URL.
Submission history
From: Dong Zhang [view email][v1] Mon, 13 Mar 2023 01:42:29 UTC (7,044 KB)
[v2] Wed, 21 Aug 2024 15:25:51 UTC (8,986 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.