Computer Science > Machine Learning
[Submitted on 11 Mar 2023]
Title:Knowledge Distillation for Efficient Sequences of Training Runs
View PDFAbstract:In many practical scenarios -- like hyperparameter search or continual retraining with new data -- related training runs are performed many times in sequence. Current practice is to train each of these models independently from scratch. We study the problem of exploiting the computation invested in previous runs to reduce the cost of future runs using knowledge distillation (KD). We find that augmenting future runs with KD from previous runs dramatically reduces the time necessary to train these models, even taking into account the overhead of KD. We improve on these results with two strategies that reduce the overhead of KD by 80-90% with minimal effect on accuracy and vast pareto-improvements in overall cost. We conclude that KD is a promising avenue for reducing the cost of the expensive preparatory work that precedes training final models in practice.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.