Computer Science > Computer Vision and Pattern Recognition
[Submitted on 8 Mar 2023 (v1), last revised 7 Oct 2024 (this version, v3)]
Title:InFusionSurf: Refining Neural RGB-D Surface Reconstruction Using Per-Frame Intrinsic Refinement and TSDF Fusion Prior Learning
View PDF HTML (experimental)Abstract:We introduce InFusionSurf, an innovative enhancement for neural radiance field (NeRF) frameworks in 3D surface reconstruction using RGB-D video frames. Building upon previous methods that have employed feature encoding to improve optimization speed, we further improve the reconstruction quality with minimal impact on optimization time by refining depth information. InFusionSurf addresses camera motion-induced blurs in each depth frame through a per-frame intrinsic refinement scheme. It incorporates the truncated signed distance field (TSDF) Fusion, a classical real-time 3D surface reconstruction method, as a pretraining tool for the feature grid, enhancing reconstruction details and training speed. Comparative quantitative and qualitative analyses show that InFusionSurf reconstructs scenes with high accuracy while maintaining optimization efficiency. The effectiveness of our intrinsic refinement and TSDF Fusion-based pretraining is further validated through an ablation study.
Submission history
From: Seunghwan Lee [view email][v1] Wed, 8 Mar 2023 10:57:14 UTC (2,538 KB)
[v2] Sun, 3 Sep 2023 09:19:16 UTC (15,526 KB)
[v3] Mon, 7 Oct 2024 01:29:12 UTC (16,219 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.