Computer Science > Machine Learning
[Submitted on 4 Mar 2023]
Title:Federated Semi-Supervised Learning with Annotation Heterogeneity
View PDFAbstract:Federated Semi-Supervised Learning (FSSL) aims to learn a global model from different clients in an environment with both labeled and unlabeled data. Most of the existing FSSL work generally assumes that both types of data are available on each client. In this paper, we study a more general problem setup of FSSL with annotation heterogeneity, where each client can hold an arbitrary percentage (0%-100%) of labeled data. To this end, we propose a novel FSSL framework called Heterogeneously Annotated Semi-Supervised LEarning (HASSLE). Specifically, it is a dual-model framework with two models trained separately on labeled and unlabeled data such that it can be simply applied to a client with an arbitrary labeling percentage. Furthermore, a mutual learning strategy called Supervised-Unsupervised Mutual Alignment (SUMA) is proposed for the dual models within HASSLE with global residual alignment and model proximity alignment. Subsequently, the dual models can implicitly learn from both types of data across different clients, although each dual model is only trained locally on a single type of data. Experiments verify that the dual models in HASSLE learned by SUMA can mutually learn from each other, thereby effectively utilizing the information of both types of data across different clients.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.