Computer Science > Robotics
[Submitted on 1 Mar 2023]
Title:Polymer-Based Self-Calibrated Optical Fiber Tactile Sensor
View PDFAbstract:Human skin can accurately sense the self-decoupled normal and shear forces when in contact with objects of different sizes. Although there exist many soft and conformable tactile sensors on robotic applications able to decouple the normal force and shear forces, the impact of the size of object in contact on the force calibration model has been commonly ignored. Here, using the principle that contact force can be derived from the light power loss in the soft optical fiber core, we present a soft tactile sensor that decouples normal and shear forces and calibrates the measurement results based on the object size, by designing a two-layered weaved polymer-based optical fiber anisotropic structure embedded in a soft elastomer. Based on the anisotropic response of optical fibers, we developed a linear calibration algorithm to simultaneously measure the size of the contact object and the decoupled normal and shear forces calibrated the object size. By calibrating the sensor at the robotic arm tip, we show that robots can reconstruct the force vector at an average accuracy of 0.15N for normal forces, 0.17N for shear forces in X-axis , and 0.18N for shear forces in Y-axis, within the sensing range of 0-2N in all directions, and the average accuracy of object size measurement of 0.4mm, within the test indenter diameter range of 5-12mm.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.