Computer Science > Robotics
[Submitted on 25 Feb 2023]
Title:Autonomous Exploration and Mapping for Mobile Robots via Cumulative Curriculum Reinforcement Learning
View PDFAbstract:Deep reinforcement learning (DRL) has been widely applied in autonomous exploration and mapping tasks, but often struggles with the challenges of sampling efficiency, poor adaptability to unknown map sizes, and slow simulation speed. To speed up convergence, we combine curriculum learning (CL) with DRL, and first propose a Cumulative Curriculum Reinforcement Learning (CCRL) training framework to alleviate the issue of catastrophic forgetting faced by general CL. Besides, we present a novel state representation, which considers a local egocentric map and a global exploration map resized to the fixed dimension, so as to flexibly adapt to environments with various sizes and shapes. Additionally, for facilitating the fast training of DRL models, we develop a lightweight grid-based simulator, which can substantially accelerate simulation compared to popular robot simulation platforms such as Gazebo. Based on the customized simulator, comprehensive experiments have been conducted, and the results show that the CCRL framework not only mitigates the catastrophic forgetting problem, but also improves the sample efficiency and generalization of DRL models, compared to general CL as well as without a curriculum. Our code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.