Computer Science > Computer Science and Game Theory
[Submitted on 23 Feb 2023]
Title:Strategyproof Social Decision Schemes on Super Condorcet Domains
View PDFAbstract:One of the central economic paradigms in multi-agent systems is that agents should not be better off by acting dishonestly. In the context of collective decision-making, this axiom is known as strategyproofness and turns out to be rather prohibitive, even when allowing for randomization. In particular, Gibbard's random dictatorship theorem shows that only rather unattractive social decision schemes (SDSs) satisfy strategyproofness on the full domain of preferences. In this paper, we obtain more positive results by investigating strategyproof SDSs on the Condorcet domain, which consists of all preference profiles that admit a Condorcet winner. In more detail, we show that, if the number of voters $n$ is odd, every strategyproof and non-imposing SDS on the Condorcet domain can be represented as a mixture of dictatorial SDSs and the Condorcet rule (which chooses the Condorcet winner with probability $1$). Moreover, we prove that the Condorcet domain is a maximal connected domain that allows for attractive strategyproof SDSs if $n$ is odd as only random dictatorships are strategyproof and non-imposing on any sufficiently connected superset of it. We also derive analogous results for even $n$ by slightly extending the Condorcet domain. Finally, we also characterize the set of group-strategyproof and non-imposing SDSs on the Condorcet domain and its supersets. These characterizations strengthen Gibbard's random dictatorship theorem and establish that the Condorcet domain is essentially a maximal domain that allows for attractive strategyproof SDSs.
Current browse context:
cs.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.