Computer Science > Information Retrieval
[Submitted on 23 Feb 2023 (v1), last revised 21 Mar 2023 (this version, v2)]
Title:MFBE: Leveraging Multi-Field Information of FAQs for Efficient Dense Retrieval
View PDFAbstract:In the domain of question-answering in NLP, the retrieval of Frequently Asked Questions (FAQ) is an important sub-area which is well researched and has been worked upon for many languages. Here, in response to a user query, a retrieval system typically returns the relevant FAQs from a knowledge-base. The efficacy of such a system depends on its ability to establish semantic match between the query and the FAQs in real-time. The task becomes challenging due to the inherent lexical gap between queries and FAQs, lack of sufficient context in FAQ titles, scarcity of labeled data and high retrieval latency. In this work, we propose a bi-encoder-based query-FAQ matching model that leverages multiple combinations of FAQ fields (like, question, answer, and category) both during model training and inference. Our proposed Multi-Field Bi-Encoder (MFBE) model benefits from the additional context resulting from multiple FAQ fields and performs well even with minimal labeled data. We empirically support this claim through experiments on proprietary as well as open-source public datasets in both unsupervised and supervised settings. Our model achieves around 27% and 20% better top-1 accuracy for the FAQ retrieval task on internal and open datasets, respectively over the best performing baseline.
Submission history
From: Mausam Jain [view email][v1] Thu, 23 Feb 2023 12:02:49 UTC (2,040 KB)
[v2] Tue, 21 Mar 2023 18:38:10 UTC (3,043 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.