Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Feb 2023]
Title:UAVStereo: A Multiple Resolution Dataset for Stereo Matching in UAV Scenarios
View PDFAbstract:Stereo matching is a fundamental task for 3D scene reconstruction. Recently, deep learning based methods have proven effective on some benchmark datasets, such as KITTI and Scene Flow. UAVs (Unmanned Aerial Vehicles) are commonly utilized for surface observation, and their captured images are frequently used for detailed 3D reconstruction due to high resolution and low-altitude acquisition. At present, the mainstream supervised learning network requires a significant amount of training data with ground-truth labels to learn model parameters. However, due to the scarcity of UAV stereo matching datasets, the learning-based network cannot be applied to UAV images. To facilitate further research, this paper proposes a novel pipeline to generate accurate and dense disparity maps using detailed meshes reconstructed by UAV images and LiDAR point clouds. Through the proposed pipeline, this paper constructs a multi-resolution UAV scenario dataset, called UAVStereo, with over 34k stereo image pairs covering 3 typical scenes. As far as we know, UAVStereo is the first stereo matching dataset of UAV low-altitude scenarios. The dataset includes synthetic and real stereo pairs to enable generalization from the synthetic domain to the real domain. Furthermore, our UAVStereo dataset provides multi-resolution and multi-scene images pairs to accommodate a variety of sensors and environments. In this paper, we evaluate traditional and state-of-the-art deep learning methods, highlighting their limitations in addressing challenges in UAV scenarios and offering suggestions for future research. The dataset is available at this https URL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.