Computer Science > Software Engineering
[Submitted on 17 Feb 2023 (v1), last revised 4 Jul 2024 (this version, v4)]
Title:Socialz: Multi-Feature Social Fuzz Testing
View PDF HTML (experimental)Abstract:Online social networks have become an integral aspect of our daily lives and play a crucial role in shaping our relationships with others. However, bugs and glitches, even minor ones, can cause anything from frustrating problems to serious data leaks that can have farreaching impacts on millions of users. To mitigate these risks, fuzz testing, a method of testing with randomised inputs, can provide increased confidence in the correct functioning of a social network. However, implementing traditional fuzz testing methods can be prohibitively difficult or impractical for programmers outside of the social network's development team. To tackle this challenge, we present Socialz, a novel approach to social fuzz testing that (1) characterises real users of a social network, (2) diversifies their interaction using evolutionary computation across multiple, non-trivial features, and (3) collects performance data as these interactions are executed. With Socialz, we aim to put social testing tools in everybody's hands, thereby improving the reliability and security of social networks used worldwide. In our study, we came across (1) one known limitation of the current GitLab CE and (2) 6,907 errors, of which 40.16% are beyond our debugging skills.
Submission history
From: Francisco Zanartu [view email][v1] Fri, 17 Feb 2023 03:00:02 UTC (6,581 KB)
[v2] Tue, 14 Mar 2023 00:38:26 UTC (6,581 KB)
[v3] Wed, 15 Mar 2023 11:21:38 UTC (8,088 KB)
[v4] Thu, 4 Jul 2024 15:33:55 UTC (7,624 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.