Mathematics > Optimization and Control
[Submitted on 15 Feb 2023]
Title:A new unified framework for designing convex optimization methods with prescribed theoretical convergence estimates: A numerical analysis approach
View PDFAbstract:We propose a new unified framework for describing and designing gradient-based convex optimization methods from a numerical analysis perspective. There the key is the new concept of weak discrete gradients (weak DGs), which is a generalization of DGs standard in numerical analysis. Via weak DG, we consider abstract optimization methods, and prove unified convergence rate estimates that hold independent of the choice of weak DGs except for some constants in the final estimate. With some choices of weak DGs, we can reproduce many popular existing methods, such as the steepest descent and Nesterov's accelerated gradient method, and also some recent variants from numerical analysis community. By considering new weak DGs, we can easily explore new theoretically-guaranteed optimization methods; we show some examples. We believe this work is the first attempt to fully integrate research branches in optimization and numerical analysis areas, so far independently developed.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.