Mathematics > Numerical Analysis
[Submitted on 13 Feb 2023]
Title:A method-of-lines framework for energy stable arbitrary Lagrangian-Eulerian methods
View PDFAbstract:We present a novel framework based on semi-bounded spatial operators for analyzing and discretizing initial boundary value problems on moving and deforming domains. This development extends an existing framework for well-posed problems and energy stable discretizations from stationary domains to the general case including arbitrary mesh motion. In particular, we show that an energy estimate derived in the physical coordinate system is equivalent to a semi-bounded property with respect to a stationary reference domain. The continuous analysis leading up to this result is based on a skew-symmetric splitting of the material time derivative, and thus relies on the property of integration-by-parts. Following this, a mimetic energy stable arbitrary Lagrangian-Eulerian framework for semi-discretization is formulated, based on approximating the material time derivative in a way consistent with discrete summation-by-parts. Thanks to the semi-bounded property, a method-of-lines approach using standard explicit or implicit time integration schemes can be applied to march the system forward in time. The same type of stability arguments applies as for the corresponding stationary domain problem, without regards to additional properties such as discrete geometric conservation. As an additional bonus we demonstrate that discrete geometric conservation, in the sense of exact free-stream preservation, can still be achieved in an automatic way with the new framework. However, we stress that this is not necessary for stability.
Current browse context:
math.NA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.