Quantum Physics
[Submitted on 8 Feb 2023]
Title:Optimal Sufficient Requirements on the Embedded Ising Problem in Polynomial Time
View PDFAbstract:One of the central applications for quantum annealers is to find the solutions of Ising problems. Suitable Ising problems, however, need to be formulated such that they, on the one hand, respect the specific restrictions of the hardware and, on the other hand, represent the original problems which shall actually be solved. We evaluate sufficient requirements on such an embedded Ising problem analytically and transform them into a linear optimization problem. With an objective function aiming to minimize the maximal absolute problem parameter, the precision issues of the annealers are addressed. Due to the redundancy of several constraints, we can show that the formally exponentially large optimization problem can be reduced and finally solved in polynomial time for the standard embedding setting where the embedded vertices induce trees. This allows to formulate provably equivalent embedded Ising problems in a practical setup.
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.