Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Feb 2023 (v1), last revised 30 Jul 2024 (this version, v4)]
Title:Look Around and Learn: Self-Training Object Detection by Exploration
View PDF HTML (experimental)Abstract:When an object detector is deployed in a novel setting it often experiences a drop in performance. This paper studies how an embodied agent can automatically fine-tune a pre-existing object detector while exploring and acquiring images in a new environment without relying on human intervention, i.e., a fully self-supervised approach. In our setting, an agent initially learns to explore the environment using a pre-trained off-the-shelf detector to locate objects and associate pseudo-labels. By assuming that pseudo-labels for the same object must be consistent across different views, we learn the exploration policy Look Around to mine hard samples, and we devise a novel mechanism called Disagreement Reconciliation for producing refined pseudo-labels from the consensus among observations. We implement a unified benchmark of the current state-of-the-art and compare our approach with pre-existing exploration policies and perception mechanisms. Our method is shown to outperform existing approaches, improving the object detector by 6.2% in a simulated scenario, a 3.59% advancement over other state-of-the-art methods, and by 9.97% in the real robotic test without relying on ground-truth. Code for the proposed approach and baselines are available at this https URL.
Submission history
From: Gianluca Scarpellini [view email][v1] Tue, 7 Feb 2023 16:26:45 UTC (42,439 KB)
[v2] Fri, 10 Feb 2023 12:48:43 UTC (42,439 KB)
[v3] Fri, 12 Jul 2024 08:54:33 UTC (12,083 KB)
[v4] Tue, 30 Jul 2024 13:18:32 UTC (12,089 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.