Computer Science > Artificial Intelligence
[Submitted on 6 Feb 2023 (v1), last revised 6 Jun 2024 (this version, v2)]
Title:An intelligent tutor for planning in large partially observable environments
View PDF HTML (experimental)Abstract:AI can not only outperform people in many planning tasks, but it can also teach them how to plan better. A recent and promising approach to improving human decision-making is to create intelligent tutors that utilize AI to discover and teach optimal planning strategies automatically. Prior work has shown that this approach can improve planning in artificial, fully observable planning tasks. Unlike these artificial tasks, the world is only partially observable. To bridge this gap, we developed and evaluated the first intelligent tutor for planning in partially observable environments. Compared to previous intelligent tutors for teaching planning strategies, this novel intelligent tutor combines two innovations: 1) a new metareasoning algorithm for discovering optimal planning strategies for large, partially observable environments, and 2) scaffolding the learning processing by having the learner choose from an increasing larger set of planning operations in increasingly larger planning problems. We found that our new strategy discovery algorithm is superior to the state-of-the-art. A preregistered experiment with 330 participants demonstrated that the new intelligent tutor is highly effective at improving people's ability to make good decisions in partially observable environments. This suggests our human-centered tutoring approach can successfully boost human planning in complex, partially observable sequential decision problems, a promising step towards using AI-powered intelligent tutors to improve human planning in the real world.
Submission history
From: Lovis Heindrich [view email][v1] Mon, 6 Feb 2023 13:57:08 UTC (1,971 KB)
[v2] Thu, 6 Jun 2024 13:29:08 UTC (1,134 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.