Quantum Physics
[Submitted on 1 Feb 2023]
Title:Hardness of braided quantum circuit optimization in the surface code
View PDFAbstract:Large-scale quantum information processing requires the use of quantum error correcting codes to mitigate the effects of noise in quantum devices. Topological error-correcting codes, such as surface codes, are promising candidates as they can be implemented using only local interactions in a two-dimensional array of physical qubits. Procedures such as defect braiding and lattice surgery can then be used to realize a fault-tolerant universal set of gates on the logical space of such topological codes. However, error correction also introduces a significant overhead in computation time, the number of physical qubits, and the number of physical gates. While optimizing fault-tolerant circuits to minimize this overhead is critical, the computational complexity of such optimization problems remains unknown. This ambiguity leaves room for doubt surrounding the most effective methods for compiling fault-tolerant circuits for a large-scale quantum computer. In this paper, we show that the optimization of a special subset of braided quantum circuits is NP-hard by a polynomial-time reduction of the optimization problem into a specific problem called Planar Rectilinear 3SAT.
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.