Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Jan 2023 (v1), last revised 10 Mar 2024 (this version, v3)]
Title:Language-Driven Anchors for Zero-Shot Adversarial Robustness
View PDF HTML (experimental)Abstract:Deep Neural Networks (DNNs) are known to be susceptible to adversarial attacks. Previous researches mainly focus on improving adversarial robustness in the fully supervised setting, leaving the challenging domain of zero-shot adversarial robustness an open question. In this work, we investigate this domain by leveraging the recent advances in large vision-language models, such as CLIP, to introduce zero-shot adversarial robustness to DNNs. We propose LAAT, a Language-driven, Anchor-based Adversarial Training strategy. LAAT utilizes the features of a text encoder for each category as fixed anchors (normalized feature embeddings) for each category, which are then employed for adversarial training. By leveraging the semantic consistency of the text encoders, LAAT aims to enhance the adversarial robustness of the image model on novel categories. However, naively using text encoders leads to poor results. Through analysis, we identified the issue to be the high cosine similarity between text encoders. We then design an expansion algorithm and an alignment cross-entropy loss to alleviate the problem. Our experimental results demonstrated that LAAT significantly improves zero-shot adversarial robustness over state-of-the-art methods. LAAT has the potential to enhance adversarial robustness by large-scale multimodal models, especially when labeled data is unavailable during training.
Submission history
From: Xiao Li [view email][v1] Mon, 30 Jan 2023 17:34:43 UTC (275 KB)
[v2] Mon, 10 Apr 2023 18:03:57 UTC (363 KB)
[v3] Sun, 10 Mar 2024 08:01:03 UTC (232 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.