Computer Science > Databases
[Submitted on 27 Jan 2023]
Title:TiLT: A Time-Centric Approach for Stream Query Optimization and Parallelization
View PDFAbstract:Stream processing engines (SPEs) are widely used for large scale streaming analytics over unbounded time-ordered data streams. Modern day streaming analytics applications exhibit diverse compute characteristics and demand strict latency and throughput requirements. Over the years, there has been significant attention in building hardware-efficient stream processing engines (SPEs) that support several query optimization, parallelization, and execution strategies to meet the performance requirements of large scale streaming analytics applications. However, in this work, we observe that these strategies often fail to generalize well on many real-world streaming analytics applications due to several inherent design limitations of current SPEs. We further argue that these limitations stem from the shortcomings of the fundamental design choices and the query representation model followed in modern SPEs. To address these challenges, we first propose TiLT, a novel intermediate representation (IR) that offers a highly expressive temporal query language amenable to effective query optimization and parallelization strategies. We subsequently build a compiler backend for TiLT that applies such optimizations on streaming queries and generates hardware-efficient code to achieve high performance on multi-core stream query executions. We demonstrate that TiLT achieves up to 326x (20.49x on average) higher throughput compared to state-of-the-art SPEs (e.g., Trill) across eight real-world streaming analytics applications. TiLT source code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.