Computer Science > Machine Learning
[Submitted on 27 Jan 2023]
Title:SplitGNN: Splitting GNN for Node Classification with Heterogeneous Attention
View PDFAbstract:With the frequent happening of privacy leakage and the enactment of privacy laws across different countries, data owners are reluctant to directly share their raw data and labels with any other party. In reality, a lot of these raw data are stored in the graph database, especially for finance. For collaboratively building graph neural networks(GNNs), federated learning(FL) may not be an ideal choice for the vertically partitioned setting where privacy and efficiency are the main concerns. Moreover, almost all the existing federated GNNs are mainly designed for homogeneous graphs, which simplify various types of relations as the same type, thus largely limits their performance. We bridge this gap by proposing a split learning-based GNN(SplitGNN), where this model is divided into two sub-models: the local GNN model includes all the private data related computation to generate local node embeddings, whereas the global model calculates global embeddings by aggregating all the participants' local embeddings. Our SplitGNN allows the isolated heterogeneous neighborhood to be collaboratively utilized. To better capture representations, we propose a novel Heterogeneous Attention(HAT) algorithm and use both node-based and path-based attention mechanisms to learn various types of nodes and edges with multi-hop relation features. We demonstrate the effectiveness of our SplitGNN on node classification tasks for two standard public datasets and the real-world dataset. Extensive experimental results validate that our proposed SplitGNN significantly outperforms the state-of-the-art(SOTA) methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.