Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Jan 2023 (v1), last revised 1 Jun 2023 (this version, v3)]
Title:Toward Foundation Models for Earth Monitoring: Generalizable Deep Learning Models for Natural Hazard Segmentation
View PDFAbstract:Climate change results in an increased probability of extreme weather events that put societies and businesses at risk on a global scale. Therefore, near real-time mapping of natural hazards is an emerging priority for the support of natural disaster relief, risk management, and informing governmental policy decisions. Recent methods to achieve near real-time mapping increasingly leverage deep learning (DL). However, DL-based approaches are designed for one specific task in a single geographic region based on specific frequency bands of satellite data. Therefore, DL models used to map specific natural hazards struggle with their generalization to other types of natural hazards in unseen regions. In this work, we propose a methodology to significantly improve the generalizability of DL natural hazards mappers based on pre-training on a suitable pre-task. Without access to any data from the target domain, we demonstrate this improved generalizability across four U-Net architectures for the segmentation of unseen natural hazards. Importantly, our method is invariant to geographic differences and differences in the type of frequency bands of satellite data. By leveraging characteristics of unlabeled images from the target domain that are publicly available, our approach is able to further improve the generalization behavior without fine-tuning. Thereby, our approach supports the development of foundation models for earth monitoring with the objective of directly segmenting unseen natural hazards across novel geographic regions given different sources of satellite imagery.
Submission history
From: Johannes Jakubik [view email][v1] Mon, 23 Jan 2023 08:35:00 UTC (75 KB)
[v2] Wed, 19 Apr 2023 08:37:06 UTC (75 KB)
[v3] Thu, 1 Jun 2023 12:37:41 UTC (1,692 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.