Computer Science > Software Engineering
[Submitted on 21 Jan 2023 (v1), last revised 27 Apr 2023 (this version, v2)]
Title:LWS: A Framework for Log-based Workload Simulation in Session-based SUT
View PDFAbstract:Artificial intelligence for IT Operations (AIOps) plays a critical role in operating and managing cloud-native systems and microservice-based applications but is limited by the lack of high-quality datasets with diverse scenarios. Realistic workloads are the premise and basis of generating such AIOps datasets, with the session-based workload being one of the most typical examples. Due to privacy concerns, complexity, variety, and requirements for reasonable intervention, it is difficult to copy or generate such workloads directly, showing the importance of effective and intervenable workload simulation. In this paper, we formulate the task of workload simulation and propose a framework for Log-based Workload Simulation (LWS) in session-based systems. LWS extracts the workload specification including the user behavior abstraction based on agglomerative clustering as well as relational models and the intervenable workload intensity from session logs. Then LWS combines the user behavior abstraction with the workload intensity to generate simulated workloads. The experimental evaluation is performed on an open-source cloud-native application with both well-designed and public real-world workloads, showing that the simulated workload generated by LWS is effective and intervenable, which provides the foundation of generating high-quality AIOps datasets.
Submission history
From: Yongqi Han [view email][v1] Sat, 21 Jan 2023 01:58:34 UTC (971 KB)
[v2] Thu, 27 Apr 2023 12:00:07 UTC (1,039 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.