Computer Science > Machine Learning
[Submitted on 16 Jan 2023]
Title:Stability Analysis of Sharpness-Aware Minimization
View PDFAbstract:Sharpness-aware minimization (SAM) is a recently proposed training method that seeks to find flat minima in deep learning, resulting in state-of-the-art performance across various domains. Instead of minimizing the loss of the current weights, SAM minimizes the worst-case loss in its neighborhood in the parameter space. In this paper, we demonstrate that SAM dynamics can have convergence instability that occurs near a saddle point. Utilizing the qualitative theory of dynamical systems, we explain how SAM becomes stuck in the saddle point and then theoretically prove that the saddle point can become an attractor under SAM dynamics. Additionally, we show that this convergence instability can also occur in stochastic dynamical systems by establishing the diffusion of SAM. We prove that SAM diffusion is worse than that of vanilla gradient descent in terms of saddle point escape. Further, we demonstrate that often overlooked training tricks, momentum and batch-size, are important to mitigate the convergence instability and achieve high generalization performance. Our theoretical and empirical results are thoroughly verified through experiments on several well-known optimization problems and benchmark tasks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.