Computer Science > Machine Learning
[Submitted on 12 Jan 2023]
Title:Improvement of Computational Performance of Evolutionary AutoML in a Heterogeneous Environment
View PDFAbstract:Resource-intensive computations are a major factor that limits the effectiveness of automated machine learning solutions. In the paper, we propose a modular approach that can be used to increase the quality of evolutionary optimization for modelling pipelines with a graph-based structure. It consists of several stages - parallelization, caching and evaluation. Heterogeneous and remote resources can be involved in the evaluation stage. The conducted experiments confirm the correctness and effectiveness of the proposed approach. The implemented algorithms are available as a part of the open-source framework FEDOT.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.