Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Jan 2023]
Title:Attribute-Centric Compositional Text-to-Image Generation
View PDFAbstract:Despite the recent impressive breakthroughs in text-to-image generation, generative models have difficulty in capturing the data distribution of underrepresented attribute compositions while over-memorizing overrepresented attribute compositions, which raises public concerns about their robustness and fairness. To tackle this challenge, we propose ACTIG, an attribute-centric compositional text-to-image generation framework. We present an attribute-centric feature augmentation and a novel image-free training scheme, which greatly improves model's ability to generate images with underrepresented attributes. We further propose an attribute-centric contrastive loss to avoid overfitting to overrepresented attribute compositions. We validate our framework on the CelebA-HQ and CUB datasets. Extensive experiments show that the compositional generalization of ACTIG is outstanding, and our framework outperforms previous works in terms of image quality and text-image consistency.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.