Computer Science > Data Structures and Algorithms
[Submitted on 1 Jan 2023]
Title:Correlation Clustering Algorithm for Dynamic Complete Signed Graphs: An Index-based Approach
View PDFAbstract:In this paper, we reduce the complexity of approximating the correlation clustering problem from $O(m\times\left( 2+ \alpha (G) \right)+n)$ to $O(m+n)$ for any given value of $\varepsilon$ for a complete signed graph with $n$ vertices and $m$ positive edges where $\alpha(G)$ is the arboricity of the graph. Our approach gives the same output as the original algorithm and makes it possible to implement the algorithm in a full dynamic setting where edge sign flipping and vertex addition/removal are allowed. Constructing this index costs $O(m)$ memory and $O(m\times\alpha(G))$ time. We also studied the structural properties of the non-agreement measure used in the approximation algorithm. The theoretical results are accompanied by a full set of experiments concerning seven real-world graphs. These results shows superiority of our index-based algorithm to the non-index one by a decrease of %34 in time on average.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.