Computer Science > Information Retrieval
[Submitted on 3 Jan 2023]
Title:Causal Inference in Recommender Systems: A Survey of Strategies for Bias Mitigation, Explanation, and Generalization
View PDFAbstract:In the era of information overload, recommender systems (RSs) have become an indispensable part of online service platforms. Traditional RSs estimate user interests and predict their future behaviors by utilizing correlations in the observational historical activities, their profiles, and the content of interacted items. However, since the inherent causal reasons that lead to the observed users' behaviors are not considered, multiple types of biases could exist in the generated recommendations. In addition, the causal motives that drive user activities are usually entangled in these RSs, where the explainability and generalization abilities of recommendations cannot be guaranteed. To address these drawbacks, recent years have witnessed an upsurge of interest in enhancing traditional RSs with causal inference techniques. In this survey, we provide a systematic overview of causal RSs and help readers gain a comprehensive understanding of this promising area. We start with the basic concepts of traditional RSs and their limitations due to the lack of causal reasoning ability. We then discuss how different causal inference techniques can be introduced to address these challenges, with an emphasis on debiasing, explainability promotion, and generalization improvement. Furthermore, we thoroughly analyze various evaluation strategies for causal RSs, focusing especially on how to reliably estimate their performance with biased data if the causal effects of interests are unavailable. Finally, we provide insights into potential directions for future causal RS research.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.