Mathematics > Analysis of PDEs
[Submitted on 22 Dec 2022]
Title:Spectral analysis of a family of nonsymmetric fractional elliptic operators
View PDFAbstract:In this work, we investigate the spectral problem $Au = {\lambda}u$ where $A$ is a fractional elliptic operator involving left- and right-sided Riemann-Liouville derivatives. These operators are nonlocal and nonsymmetric, however, share certain classic elliptic properties. The eigenvalues correspond to the roots of a class of certain special functions. Compared with classic Sturm-Liouville problems, the most challenging part is to set up the framework for analyzing these nonlocal operators, which requires developing new tools. We prove the existence of the real eigenvalues, find the range for all possible complex eigenvalues, explore the graphs of eigenfunctions, and show numerical findings on the distribution of eigenvalues on the complex plane.
Current browse context:
math.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.