Computer Science > Information Theory
[Submitted on 22 Dec 2022 (v1), last revised 22 Apr 2023 (this version, v2)]
Title:Coding Gain for Age of Information in a Multi-source System with Erasure Channel
View PDFAbstract:In our work, we study the age of information ($\AoI$) in a multi-source system where $K$ sources transmit updates of their time-varying processes via a common-aggregator node to a destination node through a channel with packet delivery errors. We analyze $\AoI$ for an $(\alpha, \beta, \epsilon_0, \epsilon_1)$-Gilbert-Elliot ($\GE$) packet erasure channel with a round-robin scheduling policy. We employ maximum distance separable ($\MDS$) scheme at aggregator for encoding the multi-source updates. We characterize the mean $\AoI$ for the $\MDS$ coded system for the case of large blocklengths. We further show that the \emph{optimal coding rate} that achieves maximum \emph{coding gain} over the uncoded system is $n(1-\pers)-\smallO(n)$, where $\pers \triangleq \frac{\beta}{\alpha+\beta}\epsilon_0 + \frac{\alpha}{\alpha+\beta}\epsilon_1$, and this maximum coding gain is $(1+\pers)/(1+\smallO(1))$.
Submission history
From: Shubhransh Singhvi [view email][v1] Thu, 22 Dec 2022 05:33:58 UTC (445 KB)
[v2] Sat, 22 Apr 2023 08:46:16 UTC (476 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.