Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 Dec 2022 (v1), last revised 19 Mar 2023 (this version, v2)]
Title:Reference-based Image and Video Super-Resolution via C2-Matching
View PDFAbstract:Reference-based Super-Resolution (Ref-SR) has recently emerged as a promising paradigm to enhance a low-resolution (LR) input image or video by introducing an additional high-resolution (HR) reference image. Existing Ref-SR methods mostly rely on implicit correspondence matching to borrow HR textures from reference images to compensate for the information loss in input images. However, performing local transfer is difficult because of two gaps between input and reference images: the transformation gap (e.g., scale and rotation) and the resolution gap (e.g., HR and LR). To tackle these challenges, we propose C2-Matching in this work, which performs explicit robust matching crossing transformation and resolution. 1) To bridge the transformation gap, we propose a contrastive correspondence network, which learns transformation-robust correspondences using augmented views of the input image. 2) To address the resolution gap, we adopt teacher-student correlation distillation, which distills knowledge from the easier HR-HR matching to guide the more ambiguous LR-HR matching. 3) Finally, we design a dynamic aggregation module to address the potential misalignment issue between input images and reference images. In addition, to faithfully evaluate the performance of Reference-based Image Super-Resolution under a realistic setting, we contribute the Webly-Referenced SR (WR-SR) dataset, mimicking the practical usage scenario. We also extend C2-Matching to Reference-based Video Super-Resolution task, where an image taken in a similar scene serves as the HR reference image. Extensive experiments demonstrate that our proposed C2-Matching significantly outperforms state of the arts on the standard CUFED5 benchmark and also boosts the performance of video SR by incorporating the C2-Matching component into Video SR pipelines.
Submission history
From: Yuming Jiang [view email][v1] Mon, 19 Dec 2022 16:15:02 UTC (39,355 KB)
[v2] Sun, 19 Mar 2023 13:54:29 UTC (39,355 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.