Computer Science > Social and Information Networks
[Submitted on 17 Dec 2022 (v1), last revised 22 Dec 2022 (this version, v2)]
Title:Most Probable Densest Subgraphs
View PDFAbstract:Computing the densest subgraph is a primitive graph operation with critical applications in detecting communities, events, and anomalies in biological, social, Web, and financial networks. In this paper, we study the novel problem of Most Probable Densest Subgraph (MPDS) discovery in uncertain graphs: Find the node set that is the most likely to induce a densest subgraph in an uncertain graph. We further extend our problem by considering various notions of density, e.g., clique and pattern densities, studying the top-k MPDSs, and finding the node set with the largest containment probability within densest subgraphs. We show that it is #P-hard to compute the probability of a node set inducing a densest subgraph. We then devise sampling-based efficient algorithms, with end-to-end accuracy guarantees, to compute the MPDS. Our thorough experimental results and real-world case studies on brain and social networks validate the effectiveness, efficiency, and usefulness of our solution.
Submission history
From: Arkaprava Saha [view email][v1] Sat, 17 Dec 2022 07:53:27 UTC (2,083 KB)
[v2] Thu, 22 Dec 2022 16:18:56 UTC (2,042 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.