Computer Science > Computation and Language
[Submitted on 15 Dec 2022]
Title:The effects of gender bias in word embeddings on depression prediction
View PDFAbstract:Word embeddings are extensively used in various NLP problems as a state-of-the-art semantic feature vector representation. Despite their success on various tasks and domains, they might exhibit an undesired bias for stereotypical categories due to statistical and societal biases that exist in the dataset they are trained on. In this study, we analyze the gender bias in four different pre-trained word embeddings specifically for the depression category in the mental disorder domain. We use contextual and non-contextual embeddings that are trained on domain-independent as well as clinical domain-specific data. We observe that embeddings carry bias for depression towards different gender groups depending on the type of embeddings. Moreover, we demonstrate that these undesired correlations are transferred to the downstream task for depression phenotype recognition. We find that data augmentation by simply swapping gender words mitigates the bias significantly in the downstream task.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.