Electrical Engineering and Systems Science > Systems and Control
[Submitted on 8 Dec 2022 (v1), last revised 1 Jun 2023 (this version, v3)]
Title:No driver, No Regulation? --Online Legal Driving Behavior Monitoring for Self-driving Vehicles
View PDFAbstract:Defined traffic laws must be respected by all vehicles. However, it is essential to know which behaviors violate the current laws, especially when a responsibility issue is involved in an accident. This brings challenges of digitizing human-driver-oriented traffic laws and monitoring vehicles' behaviors continuously. To address these challenges, this paper aims to digitize traffic law comprehensively and provide an application for online monitoring of legal driving behavior for autonomous vehicles. This paper introduces a layered trigger domain-based traffic law digitization architecture with digitization-classified discussions and detailed atomic propositions for online monitoring. The principal laws on a highway and at an intersection are taken as examples, and the corresponding logic and atomic propositions are introduced in detail. Finally, the digitized traffic laws are verified on the Chinese highway and intersection datasets, and defined thresholds are further discussed according to the driving behaviors in the considered dataset. This study can help manufacturers and the government in defining specifications and laws and can also be used as a useful reference in traffic laws compliance decision-making. Source code is available on this https URL.
Submission history
From: Chengxiang Zhao [view email][v1] Thu, 8 Dec 2022 09:23:05 UTC (13,715 KB)
[v2] Wed, 12 Apr 2023 09:05:42 UTC (2,693 KB)
[v3] Thu, 1 Jun 2023 10:36:45 UTC (2,882 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.