Computer Science > Machine Learning
[Submitted on 8 Dec 2022 (v1), last revised 7 Sep 2023 (this version, v2)]
Title:On Root Cause Localization and Anomaly Mitigation through Causal Inference
View PDFAbstract:Due to a wide spectrum of applications in the real world, such as security, financial surveillance, and health risk, various deep anomaly detection models have been proposed and achieved state-of-the-art performance. However, besides being effective, in practice, the practitioners would further like to know what causes the abnormal outcome and how to further fix it. In this work, we propose RootCLAM, which aims to achieve Root Cause Localization and Anomaly Mitigation from a causal perspective. Especially, we formulate anomalies caused by external interventions on the normal causal mechanism and aim to locate the abnormal features with external interventions as root causes. After that, we further propose an anomaly mitigation approach that aims to recommend mitigation actions on abnormal features to revert the abnormal outcomes such that the counterfactuals guided by the causal mechanism are normal. Experiments on three datasets show that our approach can locate the root causes and further flip the abnormal labels.
Submission history
From: Xiao Han [view email][v1] Thu, 8 Dec 2022 02:03:21 UTC (3,291 KB)
[v2] Thu, 7 Sep 2023 03:55:37 UTC (2,696 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.