Computer Science > Computation and Language
[Submitted on 1 Dec 2022]
Title:Analogical Math Word Problems Solving with Enhanced Problem-Solution Association
View PDFAbstract:Math word problem (MWP) solving is an important task in question answering which requires human-like reasoning ability. Analogical reasoning has long been used in mathematical education, as it enables students to apply common relational structures of mathematical situations to solve new problems. In this paper, we propose to build a novel MWP solver by leveraging analogical MWPs, which advance the solver's generalization ability across different kinds of MWPs. The key idea, named analogy identification, is to associate the analogical MWP pairs in a latent space, i.e., encoding an MWP close to another analogical MWP, while moving away from the non-analogical ones. Moreover, a solution discriminator is integrated into the MWP solver to enhance the association between the representations of MWPs and their true solutions. The evaluation results verify that our proposed analogical learning strategy promotes the performance of MWP-BERT on Math23k over the state-of-the-art model Generate2Rank, with 5 times fewer parameters in the encoder. We also find that our model has a stronger generalization ability in solving difficult MWPs due to the analogical learning from easy MWPs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.