Mathematics > Combinatorics
[Submitted on 30 Nov 2022 (v1), last revised 4 May 2023 (this version, v3)]
Title:Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs
View PDFAbstract:The modular decomposition of a graph $G$ is a natural construction to capture key features of $G$ in terms of a labeled tree $(T,t)$ whose vertices are labeled as "series" ($1$), "parallel" ($0$) or "prime". However, full information of $G$ is provided by its modular decomposition tree $(T,t)$ only, if $G$ is a cograph, i.e., $G$ does not contain prime modules. In this case, $(T,t)$ explains $G$, i.e., $\{x,y\}\in E(G)$ if and only if the lowest common ancestor $\mathrm{lca}_T(x,y)$ of $x$ and $y$ has label "$1$". Pseudo-cographs, or, more general, GaTEx graphs $G$ are graphs that can be explained by labeled galled-trees, i.e., labeled networks $(N,t)$ that are obtained from the modular decomposition tree $(T,t)$ of $G$ by replacing the prime vertices in $T$ by simple labeled cycles. GaTEx graphs can be recognized and labeled galled-trees that explain these graphs can be constructed in linear time.
In this contribution, we provide a novel characterization of GaTEx graphs in terms of a set $\mathfrak{F}_{\mathrm{GT}}$ of 25 forbidden induced subgraphs. This characterization, in turn, allows us to show that GaTEx graphs are closely related to many other well-known graph classes such as $P_4$-sparse and $P_4$-reducible graphs, weakly-chordal graphs, perfect graphs with perfect order, comparability and permutation graphs, murky graphs as well as interval graphs, Meyniel graphs or very strongly-perfect and brittle graphs. Moreover, we show that every GaTEx graph as twin-width at most 1 and and provide linear-time algorithms to solve several NP-hard problems (clique, coloring, independent set) on GaTEx graphs by utilizing the structure of the underlying galled-trees they explain.
Submission history
From: Marc Hellmuth [view email][v1] Wed, 30 Nov 2022 09:55:31 UTC (236 KB)
[v2] Thu, 20 Apr 2023 09:38:23 UTC (239 KB)
[v3] Thu, 4 May 2023 17:08:45 UTC (305 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.